

SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF NANOPARTICLES

Super-stable, low-toxicity
and highly bio-active metal and metal oxide nanoparticles
are synthesized through a simple and eco-friendly route.
The size and shape of the nanoparticles is fully controlled
and can be adjusted to meet the needs
of a wide spectrum of applications.

Application Field

Synthesis & Fabrication Nanoparticles and Inks Nanomaterials & Nanobiomaterials Nanocoatings & Antibacterial surfaces

Services Offered to Third Parties in the following fields

- Nano-Chemicals, Inks and Nanoparticles
- Nano-Energy, Renewables & Environment
 - Nanomaterials & Nanobiomaterials
- Metrology, Nano-Instruments & Characterization Systems
 - Nanotechnology & Food, Smart Food packaging
 - Synthesis & Fabrication Equipment
 - NanoConstruction & Buildings

Physical Metallurgy Laboratory

Head of the Laboratory

Prof. Nikolaos Michailidis

Members of the Lab/Research Team

Mr. Alexandros Prospathopoulos Ms. Afrodite Vlachou

Contact

Figure 1 Characteristic TEM image of the AgNPs

[†]Spectrum 1

Figure 2 SEM image of the dispersed AgNPs, implemented in the organic coating on the AA6061 T6.

Figure 3
Salt spray chamber for the corrosion testing of the samples.

Figure 4 Images of the corroded samples (after 60h, 3.5%wt. NaCl solution at 35oC): (a) uncoated, (b) organic coating and (c) organic coating with AgNPs.

Figure 5
Cross section of the corroded uncoated sample, showing the developed pits.

