

ARISTOTLE UNIVERSITY OF THESSALONIKI RESEARCH COMMITTEE

GROWTH, OPTICAL AND MECHANICAL PROPERTIES OF TWO-DIMENSIONAL MoS₂ AND WS₂ CRYSTALS

Molybdenum and tungsten disulfides (MoS_2 , WS_2), possess unique optical properties and phenomena. An atmospheric pressure Chemical Vapour Deposition method for the production of large area MoS_2 and WS_2 crystals is presented. Continuous MoS_2 films with monolayer and few layer domains, isolated triangular MoS_2 monolayers or very large WS_2 monolayers with lateral dimensions exceeding 300 μ m can be readily obtained. The optical and mechanical properties of the fabricated samples are deeply investigated.

Application Field

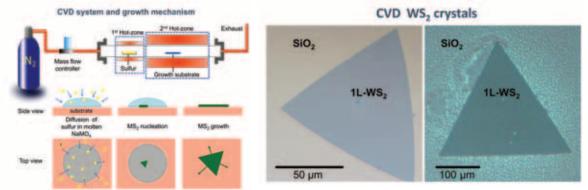
The team have intense collaborations with SMEs and industrial partners such as BIC Violex, Nanonics (Israel), Tipografio (Greece). Indicative services offered by the team:

1. Growth, and handling of 2D materials on suitable substrates for technological applications.

2. Fabrication of polymer nanocomposites based on 2D materials with superior electrical and mechanical properties for a variety of applications.

3. Modification of the optical properties of 2D materials by the application of external stimuli such as mechanical deformation (uniaxial, biaxial, hydrostatic), chemical and electrochemical doping.

Services Offered to Third Parties


A. Large scale growth by means of chemical vapour deposition of transition metal dichalcogenites (TMDs)

B. Photoluminescence emission from TMDs **C.** Influence of uniaxial and biaxial mechanical deformation on the optical properties of MoS_2 and WS_2

Laboratory of Optical Spectroscopy (Physics Department, Aristotle University of Thessaloniki)

Head of the Laboratory Prof. Konstantinos Papagelis

Members of the Lab/Research Team Dr Kiriakos Filintoglou, Msc. Niki Soroga, Markos Poulos

Figure 1

The atmospheric pressure CVD system is comprised of a two-zone quartz tube furnace. Inside the first zone an amount of elemental sulfur is placed. A Si/SiO₂ substrate coated with Na₂MO₄ (M = Mo, W) is placed in the second hot-zone. The system is flushed with nitrogen during the reaction which takes place at about 800°C. At this temperature Na₂MO₄ melts and sulfur vapors diffuse into the molten Na₂MO₄. Therefore, MS₂ nucleation occurs progressively forming isolated triangular monolayers or continuous TMD films.

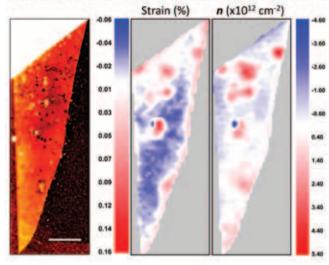

Directionality analysis

Figure 2

We find that crystals that grow on top of the amorphous SiO_2 their orientation is truly random. On the contrary, epilayers that nucleate and grow on top of a monolayer MoS_2 crystals exhibit strong directionality as can be seen in the directionality histogram.

50 µm 100 µm

Optical detection of strain and doping in 2D TMDCs

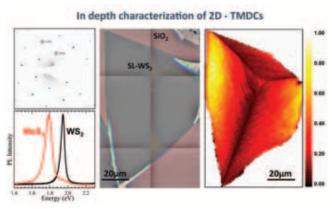


Figure 3

Utilizing Na_2WO_4 it is possible to grow large area single crystals of WS_2 .

Figure 4

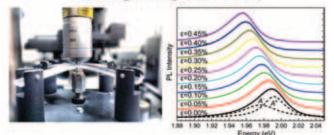

We have developed a purely optical analysis which enables the quantification of strain and doping levels present in a single layer MoS₂ crystal. In this example an AFM image of an exfoliated MoS₂ monolayer deposited on SiO₂ shows various structural defects. The strain and electron concentration maps can be extracted by a very detailed Raman mapping, which correlate very well with the AFM image, and are able to distinguish features as small as 300 nm (scale bar 3 µm).

Figure 5

The synthesized crystals are studied by a variety of techniques including Optical microscopy, Atomic Force Microscopy, Transmission Electron Microscopy, Raman and Photoluminescence spectroscopies.

Strain engineering in 2D - TMDCs

Figure 6

The optical response of the fabricated crystals is studied by in-situ Raman and PL spectroscopies. The crystals are transferred to a polymeric substrate shaped to a cruciform.